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This paper is concerned with the vibration of inhomogeneous strings, rods and
membranes with continuously varying properties. The work has two main pur-
poses. First we provide speci"c examples for which closed-form exact solutions are
obtained. Apart from their intrinsic interest, such examples serve as benchmark
problems against which the accuracy of approximate analytical or numerical
methods may be assessed. The second objective is to demonstrate the e!ectiveness
of an integral-equation-based method for obtaining lower bounds for vibration
frequencies.
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1. INTRODUCTION

Vibration problems for inhomogeneous structural elements present a challenge to
the acoustics and vibration community. In contrast to classical problems for
homogeneous strings, rods, membranes or plates for which exact solutions and
a variety of approximate methods are available for "nding frequencies and mode
shapes, analogous results for inhomogeneous bodies are relatively scarce. A num-
ber of recent papers in this journal [1}5] have been concerned with free transverse
vibrations of non-homogeneous membranes with continuously varying density or
thickness variations. Several approximate techniques for such problems are con-
sidered in references [1}4] while reference [5] provides some exact solutions.
Earlier work for composite membranes, with discontinuous property changes, has
been described in references [3, 6, 7] and references cited therein.

The purpose of the present paper is two-fold. First we provide further speci"c
examples of inhomogeneous vibrating strings, rods or membranes for which closed-
form exact solutions are obtained. As pointed out in reference [5], apart from their
intrinsic interest, such examples serve as benchmark problems against which the
accuracy of approximate analytic or numerical methods may be assessed. Our
second objective is to demonstrate the e!ectiveness of an integral equation ap-
proach for obtaining lower bounds for vibration frequencies. In contrast to upper
bounds, for which Rayleigh}Ritz methods and their variants have been well
documented, accurate lower bounds for vibration frequencies are much more
0022-460X/99/330503#11 $30.00 ( 1999 Academic Press
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di$cult to obtain. The integral-equation-based method has already been shown
(see, e.g., references [6, 8, 9]) to be more e!ective than classical di!erential equation
techniques for obtaining such bounds for vibration problems with discontinuous
coe$cients. Here we demonstrate a similar result for problems with continuously
varying properties.

The plan of the paper is as follows. In the next section, we describe three
vibration problems for inhomogeneous strings and rods whose mathematical
description is equivalent. All three problems can be cast in the form of a special
Sturm}Liouville eigenvalue problem (see equations (7) and (8)). Such problems
have been investigated recently [10, 11] in an entirely di!erent context, namely, the
study of end e!ects for anti-plane shear deformations of laterally inhomogeneous
isotropic elastic materials. The main results of the paper are presented in Section 3.
First we provide four speci"c examples of inhomogeneities for which exact closed-
form solutions are obtained. The fundamental frequencies are given and their
dependence on the degree of inhomogeneity is examined. In particular, it is shown
that certain non-homogeneous strings and rods have the same fundamental
frequencies as their homogeneous counterparts. Secondly, the integral-equation-
based method for obtaining lower bounds for the fundamental frequency is
described and its accuracy is demonstrated for the four illustrative examples.
Extension of the results to non-homogeneous membranes is outlined in Section 4.

2. INHOMOGENEOUS STRINGS AND RODS

Here we describe three vibration problems for inhomogeneous strings and rods
whose mathematical descriptions are equivalent. Our treatment follows that of
Gladwell [12].

2.1. PROBLEM 1

The free transverse vibration of a stretched string of length l, subject to constant
tension q, with mass per unit length m(x), de#ection u (x), and vibrating with
frequency u is described by

uA(x)#jm (x)u(x)"0 on 0(x(l, (1)

where j"u2/q and @"d/dx. The simplest boundary conditions are those of
a "xed end, in which case

u(0)"u (l )"0. (2)

2.2. PROBLEM II

The longitudinal vibration (in which each cross-section moves only in the
x direction) of a thin straight rod of length l, cross-sectional area A (x), constant
density o, de#ection w(x), and constant Young's modulus E is governed by

[A(x)w@ (x)]@#jA(x)w(x)"0 on 0(x(l, (3)
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where j"ou2/E. The simplest boundary conditions occur when at x"0 and
x"l there are "xed supports, so that

w (0)"w(l)"0. (4)

2.3. PROBLEM III

The free torsional vibrations of a thin straight rod of length l, with moment of
inertia J (x), twist h (x), constant density o, and constant shear modulus G are
governed by the equation

[J (x)h@ (x)]@#jJ (x)h (x)"0 on 0(x(l, (5)

where j"ou2/G. The simplest end conditions are

h(0)"h (l )"0. (6)

It can be seen that the mathematical descriptions of Problems II and III are
identical and are of the form

[k(x)g@ (x) ]@#jk(x)g (x)"0, g(0)"g(l)"0. (7, 8)

It will be assumed henceforth that k (x)'0 is continuously di!erentiable on (0, l ).
The problem (7, 8) is a regular Sturm}Liouville eigenvalue problem of special form
since the variable coe$cient k (x) is the same in both terms in equation (7). Thus,
the extensive body of knowledge available for problem (7) and (8) may be directly
applied to Problems II and III.

We now convert problem (7) and (8) to the Liouville normal form in order to
show that Problem I is also equivalent to equations (7) and (8). In equations (7) and
(8) set

¹"P
l

0

k~1(s) ds, l(t)"g(x (t)),

(9)

t(x)"¹~1P
x

0

k~1(s) ds, f (t)"[¹k(x (t))]2.

Then the j are the eigenvalues of

lA (t)#j f (t)l(t)"0 on 0(t(l, (10)

subject to

l (0)"l (1)"0. (11)

Here a prime denotes di!erentiation with respect to t. The problem (10) and (11) is
again of Sturm}Liouville form, and is seen to be identical to Problem I.
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3. FUNDAMENTAL FREQUENCIES AND MODE SHAPES

3.1. EXACT RESULTS

In what follows, we provide some examples for the inhomogeneity k (x) for which
exact solutions of equations (7) and (8) can be found. Direct interpretations of these
results for Problem II are immediate if k (x) is identi"ed as

k(x)"A (x) (12)

and

g (x)"w(x), u"(Ej/o)1@2, (13)

where the physical description of the quantities in equations (12) and (13) have been
given in Section 2. Similarly for Problem III, one identi"es k(x) as

k(x)"J (x), (14)

and

g (x)"h (x), u"(Gj/o)1@2. (15)

The implications for Problem I require use of equation (9) and will be discussed
later.

We consider four illustrative examples where the k (x) in the di!erential equation
(7) is taken to be that of Examples 1, 2, 3, 4 respectively in Table 1, where a*0,
k
0
'0 are arbitrary constants. The behaviour of k(x) in Examples 1 and 4 is

qualitatively similar in that for "xed a, the quantity k(x) is monotonically decreas-
ing in x and for "xed x, the quantity k is monotonically decreasing in a in both
examples. Likewise, Examples 2 and 3 are similar in that the corresponding
quantities are monotonically increasing. When a"0, all the vibrating elements
are homogeneous so that k"k

0
and the smallest eigenvalue j

1
of problem

(7) and (8) is

j "n2/l2 , (16)
TABLE 1

The example inhomogeneities in equation (7)

Example 1: k (x)"k
0A1#

ax

l B
~1

Example 2: k (x)"k
0A1#

ax

l B
Example 3: k(x)"k

0A1#
ax

l B
2

Example 4: k (x)"k
0
exp(!ax/l)

1
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with corresponding fundamental frequencies given by equations (13) and (15). The
parameter a provides a measure of the &&degree of inhomogeneity'' of the string or
rod.

For Example 1, it has been shown in reference [10] that the general solution of
equation (7) can be written in terms of Bessel functions as

g(x)"A1#
ax
l B GAJ

1C
j1@2l

a A1#
ax
l BD#B>

1 C
j1@2l

a A1#
ax
l BDH (17)

so that j1@2
1

l"as
1
, where s

1
"s

1
(a) is the smallest positive root of

J
1
(s)>

1
[(1#a)s]!>

1
(s)J

1
[(1#a) s]"0. (18)

Similarly, for Example 2, one "nds that

g (x)"AJ
0C

j1@2 l
a A1#

ax
l BD#B>

0 C
j1@2l

a A1#
ax
l BD (19)

and so j1@2
1

l"as
1
, where s

1
"s

1
(a) is the smallest positive root of

J
0
(s)>

0
[(1#a)s]!>

0
(s)J

0
[(1#a) s]"0. (20)

The smallest positive roots of the transcendental equations (18) and (20) may be
found in standard tables. Plots of j1@2

1
l versus a are given in Figures 1 and 2. The

corresponding mode shapes are given by equations (17) and (19), respectively, with
j replaced by j

1
. For Example 3, it has been shown in reference [10] that

j1@2
1

l"n, g
1
(x)"B (1#ax/ l )~1 sin (nx/ l ). (21)

¹his result shows that an inhomogeneous rod, with A(x) given by Example 3 for
longitudinal vibration or with J (x) given by Example 3 for torsional vibrations, has the
same fundamental frequency as the corresponding uniform rod with constant proper-
ties.

For Example 4, it can be shown (see reference [11]) that

j1@2
1

l"(4n2#a2)1@2/2, g
1
(x)"B exp(ax/2l) sin (nx/l). (22)

A plot of j1@2
1

l versus a is given in Figure 3. We see that the fundamental frequency
increases monotonically with a. As is discussed in reference [10, 11], the foregoing
is true for the class of inhomogeneities for which (k1@2)A*0 and

C(x, a),[k1@2 (x, a)]Ak~1@2 (x, a) (23)

is monotonically increasing in a. Expression (23) provides a measure of the convex-
ity of k (x, a) as a function of x. It may be easily veri"ed that C(x, a) is indeed
monotonically increasing in a for Examples 1 and 4. Similarly, it can be shown that
the fundamental frequency decreases monotonically with a if (k1@2)A)0 and
!C (x, a) is monotonically increasing in a. These conditions can be shown to hold
for Example 2. For Example 3, (k1@2 )A,0.



Figure 1. Exact value of j1@2
1

l (*}) and its lower bound (* ) )*) for Example 1.

Figure 2. Exact value of j1@2
1

l (*}) and its lower bound (* ) )*) for Example 2.

Figure 3. Exact value of j1@2
1

l (*}) and its lower bound (* ) )*) for Example 4.
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We turn now to application of the preceding exact solutions of problem (7) and
(8) to Problem I for the vibrating string. By using equation (9), the function f (t)
appearing in equation (10) may be calculated. By comparing equation (10) with
equation (1), one "nds that the mass per unit length m (x) of the string is given as in
Table 2. Thus, a vibrating string with mass per unit length given as in Table 2 and
subjected to constant tension q, has the fundamental frequency

u
1
"(qj

1
)1@2, (24)



TABLE 2

¹he function m(x) in equation (1)

Example 1: m(x)"
(a#2)2

4 C(a2#2a)
x

l
#1D

~1

Example 2: m(x)"C
ln (1#a)

a D
2

(1#a)2x@l

Example 3: m(x)"(a#1)2 Aa#1!
ax

l B
~4

Example 4: m (x)"
(ea!1)2

a2 C1#(ea!1)
x

l D
~2
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where the exact values of j1@2
1

are given by equations (18), (20), (21) and (22),
respectively. In particular, the inhomogeneous string with mass per unit length given
by Example 3 of Table 2 has the same fundamental frequency as the corresponding
uniform string with constant properties.

3.2. BOUNDS ON VIBRATION FREQUENCIES

Since exact solutions of the problem (7) and (8) are rarely available, numerous
techniques have been developed in the literature for approximating the eigenvalues
and corresponding eigenfunctions. For upper bounds on j, the Rayleigh}Ritz
method and its many variants are the most widely used. Accurate lower bounds on
j are much more di$cult to obtain. In what follows, we brie#y describe a technique
based on an integral equation approach for obtaining lower bounds on j

1
. This

method was developed in references [6, 8, 9] for problems of the form (7) and (8)
where the k (x) in equation (7) is discontinuous. Such problems arise in many areas
in the mechanics of composites. The integral-equation-based method has been
shown in references [6, 8, 9] to be particularly suitable for such problems. As we
shall demonstrate using Examples 1}4, the integral-equation method also provides
extremely accurate lower bounds for j

1
when k(x) is continuous as in the

present paper.
We begin with the formulation (10) and (11). In reference [8] it is shown that

equations (10) and (11) are equivalent to the Fredholm integral equation of the
second kind,

< (t)"j P
1

0

D(t, t
0
)< (t

0
) dt

0
, < (t)"l(t)Jf (t), (25)

where the symmetric kernel of the integral equation is de"ned as

D(t, t
0
)"f 1@2 (t)G (t, t

0
) f 1@2 (t

0
), (26)
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and the Green's function G (t, t
0
) is

G (t, t
0
) "G

(1!t
0
) t

(1!t) t
0

on 0)t)t
0
,

on t
0
)t)1.

(27)

The ¸2 norm of D is given by

DDD DD2"P
1

0
P

t0

0

f (t) f (t
0
) (1!t

0
)2 t2 dtdt

0
#P

1

0
P

1

t0

f (t) f (t) (1!t )2 t2
0
dtdt

0
. (28)

It can be shown, by a change of variables, that the double integrals in equation (28)
are equal. Thus

DDD DD2"2 P
1

0
P

t0

0

f (t) f (t
0
) (1!t

0
)2 t2 dtdt

0
(29)

or, equivalently,

DDD DD2"2 P
1

0
P

1

t0

f (t) f (t) (1!t )2 t2
0
dtdt

0
. (30)

In reference [8] it is shown that a lower bound for the smallest positive eigenvalue
of problem (10) and (11) is given by

j
1
*j

1
,DDD DD~1. (31)

The lower bound j
1
*j

1
has been explicitly evaluated in references [10, 11] for

Examples 1}4. The results are given in Table 3.
In Figures 1}3, these lower bounds for Examples 1, 2, and 4 are plotted, together

with the exact values of j1@2
1

l given by equations (18), (20) and (22), respectively. As

(

TABLE 3

¹he lower bound j1@2
1

from equation (31)

Example 1: j1@2
1

l"
(8/u)1@4

(2#a)
where u"

ln(1#b)2 (1/2#1/b#1/2b2)

b4
#

1/12!1/b!1/b2

2b2

and b"a (a#2)

Example 2: j1@2
1

l"
aJ8 ln(1#a)

s1@4
where s"2[(1#a)4#1] M[ln (1#a)]2#2N

!5[(1#a)4!1] ln (1#a)!8(1#a)2

Example 3: j1@2
1

l"31@2101@4:3)08007

Example 4: j1@2
1

l"A
a4 (ea!1)2

2[!4(ea!1)2#(e2a!1)a#2a2ea]B
1@4
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aP0, all of the lower bounds have the values 31@2]101@4"3)08007, whereas the
exact results have the value n. It is seen that the lower bounds are extremely
accurate and re#ect the monotonic character of the exact values as the parameter
a varies. It is also striking that in the case of Example 3 (not plotted), for which the
exact fundamental frequency (21) is n, the lower bound j1@2

1
l is also independent of

a. ¹hus, the lower bounds furnished by the integral-equation technique are seen to
provide a remarkably accurate estimate for the fundamental frequency for the exam-
ples considered. An additional advantage of the method is the fact that the results
are explicit in the inhomogeneity measure a, thus allowing for parametric studies.
The integral-equation-based method can also be used to "nd lower bounds for
higher eigenfrequencies (see references [8, 9]) but we shall not pursue this here.

4. CONCLUDING REMARKS

We conclude with a brief outline of application of the preceding results to
vibrations of inhomogeneous membranes. The transverse vibrations of a mem-
brane occupying the simply connected plane domain D and "xed on the boundary
LD are described by

+2w#jo (x, y)w"0 on D (32)

subject to

w"0 on LD. (33)

Here w(x, y) is the transverse displacement, o (x, y) the mass density and

j"u2/q, (34)

where q is the constant tension per unit length and u the frequency of vibration.
Suppose that D is the rectangular domain 0)x)a, 0)y)b. If one seeks

separable solutions of equation (32) of the form

w(x, y)"f (x)g (y), (35)

then it is easily shown that, if the mass density o(x, y) is such that

o (x, y)"o
1
(x)#o

2
(y), (36)

one obtains a pair of Sturm}Liouville problems of the form

f A(x)#cp(x) f (x)"0, (37)

f (0)"0, f (a)"0, (38)

gK (y)#gq(y)g (y)"0, (39)

g(0)"0, g(b)"0, (40)
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where

jo(x, y)"cp(x)#gq(y), (41)

and where the overdot denotes di!erentiation with respect to y. Each of the
preceding eigenvalue problems with eigenvalue parameter c and g, respectively, has
the form (1) and (2). Thus, the exact solutions developed in Section 3 for the
densities of Table 2 may be used to generate exact solutions for inhomogeneous
rectangular membranes with densities of the form (36), where o

1
and o

2
can be

taken equal to any entry in Table 2. Similarly, the lower-bound techniques de-
scribed in Section 3 can be used to obtain lower bounds for the membrane
frequencies.

A special case of the foregoing has been considered in recent papers in this
journal [1}5] where o

2
in equation (36) has been taken to be constant, and o

1
(x) is

assumed to be linear in x. Approximate methods are employed in references [1}4]
while an exact solution is obtained in reference [5].
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